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1 Introduction

Technicolor is an attractive idea in which electroweak symmetry is dynamically broken

by a strong dynamics operating around the TeV energy scale [1, 2]. The big hierarchy,

mW ≪ MPl, is elegantly explained by the very same reason as ΛQCD ≪ MPl. However,

it is well-known that there are two phenomenological difficulties in this idea. One is that

the electroweak precision measurements seem to prefer scenarios with a weakly coupled

light Higgs boson [3]. Another is the difficulty in writing down the Yukawa interactions to

generate fermion masses in the Standard Model.

After the LEP-I experiments, supersymmetry (SUSY) has become very popular as a

natural scenario for the light weakly coupled Higgs boson. However, with the experimental

bound on the lightest Higgs boson mass from the LEP-II experiments, parameters in the

minimal SUSY standard model (MSSM) are required to be more and more fine-tuned, at

least in the conventional scenarios [4–6].

In this situation, it may be interesting to (re)consider a hybrid of technicolor and SUSY

along the similar spirit of the early attempts of SUSY model building [7, 8]. We assume that

strong dynamics breaks SUSY at the multi-TeV energy scale (which we call the scale Λ),

with electroweak symmetry breaking triggered by the dynamics through direct couplings

between the Higgs field and the dynamical sector. This scenario has several virtues: (1) the

Yukawa interactions can be written down by assuming an existence of elementary Higgs

fields in the UV theory, which mix with (or remain as) the Higgs field to break electroweak

symmetry at low energy [9–11]; (2) the hierarchy problem, Λ ≪ MPl, is explained by dy-

namical SUSY breaking [12]; (3) one can hope that the little hierarchy, mW ∼ mh ≪ Λ, is
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explained by either SUSY or some other mechanisms such as the Higgs boson as the pseudo-

Nambu-Goldstone particle in the strong dynamics [13]; (4) the cosmological gravitino prob-

lem is absent [14]; (5) one can expect additional contributions to the Higgs boson mass from

the SUSY breaking sector, with which the mass bound from the LEP-II experiments can

be evaded [15]; and (6), there is an interesting possibility that the LHC experiments can

probe the SUSY breaking dynamics directly. SUSY is phenomenologically motivated from

the point (1) (and also (6)) in this framework in addition to the connection to string theory.

Although the TeV-scale SUSY breaking scenario is an interesting possibility, an ex-

plicit model realizing this scenario will not be attempted here. In this paper, we take a

less ambitious approach and construct an effective Lagrangian for the scenario without

specifying (while hoping for the existence of) a UV theory responsible for SUSY breaking

and its mediation.

In constructing the effective Lagrangian, we take the following as organizing principles:

(1) the Lagrangian possesses non-linearly realized supersymmetry; (2) the quarks/leptons

and gauge fields are only weakly coupled to the SUSY breaking sector, so that the typical

mass splitting between bosons and fermions are O(100) GeV (in other words, the matter

and gauge fields are introduced as superfields which transform linearly under SUSY); and

(3) the Higgs boson is introduced as a non-linearly transforming field because it is assumed

to be directly coupled to the SUSY breaking sector. The Higgsino field is absent in the

minimal model.

In this Higgsinoless model, the Higgs potential receives quadratic divergences from

loop diagrams with the gauge interactions and the Higgs quartic interaction although the

top-quark loops can be cancelled by the loops of the scalar top quarks as usual. The

rough estimate of the correction to the Higgs boson mass is of the order of (α/4π)Λ2 and

(k/16π2)Λ2 with k being the coupling constant of the Higgs quartic interaction. By com-

paring with the quadratic term needed for electroweak symmetry breaking, m2
H = k〈H〉2/2,

naturalness suggests Λ . 4π〈H〉 ∼ (a few) ×TeV. Precision electroweak constraints, on

the other hand, obtained from the LEP-II and SLC experiments do not generically allow

such a low scale without fine-tuning [16]. The dynamical scale may therefore have to be

larger, Λ ≃ O(6−10TeV). To obtain a light Higgs boson at this larger scale either requires

fine-tuning, or some new weakly coupled new physics below Λ. (Or simply the Higgsino

appears around a few TeV.) It is also true that the direct coupling to the dynamical sector

generically gives the Higgs boson mass to be O(Λ). We may therefore need to assume that

the Higgs boson is somewhat special in the dynamics, e.g., a pseudo-Goldstone boson. In

this paper we simply ignore the issue because its resolution depends on the UV completion,

and here we only concerned with the effective theory below the TeV scale.

The stop potential also receives quadratic divergences, in this case from a loop diagram

involving the Higgs boson (and proportional to λ2
t ). This divergence is not cancelled, simply

because the Higgsinos are not present in the low energy theory. One therefore expects the

stops to have a mass no smaller than a loop factor below the scale Λ.

The Lagrangian we construct needs to contain interaction terms among superfields and

also partnerless fields such as the Higgs boson. Since these two kinds of fields are defined on

different spaces — one superspace and the other the usual Minkowski space — one needs
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to convert the partnerless fields into superfields or vice-versa. One approach is to utilize

established formulations for constructing superfields out of partnerless fields [17–19] where

the Goldstino field is also promoted to a superfield. In this paper, we present a simple

manifestly supersymmetric formulation where we do not try to convert partnerless fields

into superfields, although it is totally equivalent to the known formalisms. The essence is to

prepare two kinds of spaces: the superspace and the Minkowski space, on which superfields

and partnerless fields are defined. By embedding the Minkowski space into the superspace

by using a SUSY invariant map, one can define a Lagrangian density on a single space-time.

By using the formalism, one can write down a SUSY invariant Lagrangian, in particular the

Yukawa interactions, only with a single Higgs field. We also find that the coupling constant

of the Higgs quartic interaction can be a free parameter, unrelated to the gauge coupling

constant. Therefore, the Higgs boson mass can be treated as a free parameter in this model.

As a related topic, a model in which the MSSM is only partly supersymmetric has

been proposed in ref. [20]. There SUSY is broken explicitly at the Planck scale, and only

the Higgs sector is remained to be supersymmetric which is made possible by a warped

extra-dimension (or a conformal dynamics). Our philosophy is opposite to that and is,

relatively speaking, closer to ref. [21] by the same authors, where SUSY is broken on the

IR brane (or equivalently by some strong dynamics at the O(TeV) scale).

As a possible signature of the TeV-scale dynamics, we construct a model “Hidden Grav-

ity,” which is an analogy of the Hidden Local Symmetry [22–26] in the chiral Lagrangian.

The Hidden Local Symmetry is a manifestly chiral symmetric model to describe the vector

resonance (the ρ meson) as the gauge boson of the hidden vectorial SU(2) symmetry (the

unbroken symmetry of the chiral Lagrangian). When we apply this technique to SUSY,

we obtain a supersymmetric Lagrangian for a massive spin-two field which is introduced

as a graviton associated with a hidden general covariance because the unbroken symmetry

is the Poincaré symmetry.

One can consistently incorporate the resonance as a non-strongly coupled field for a

range of parameters and small range of energy. Indeed, we show that there is a sensible

parameter region where we can perform a perturbative calculation of the resonant single-

graviton production cross section. At energies not far above the graviton mass the effective

theory becomes strongly coupled and incalculable. If the graviton is much lighter than the

cut-off scale, new physics is required to complete the theory up to Λ, another direction not

pursued here. We discuss signatures of this graviton scenario at the LHC.

2 Non-linear SUSY and invariant Lagrangian

In this section we present a method to construct a Lagrangian invariant under the non-

linearly realized global supersymmetry. We will introduce the Higgs boson as a non-

linearly transforming field (which we call a non-linear field) and also matter and gauge

fields as superfields. We therefore need a formulation to write down a supersymmetric

Lagrangian where both kinds of fields are interacting. Roc̆ek [17], Ivanov and Kapust-

nikov [18], and Samuel and Wess [19] have established a superfield formalism of non-linear

SUSY by upgrading the Goldstino fermion and other non-linear fields to constrained su-
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perfields. (See [27] for a recent work.) Although the formalism is somewhat complicated,

using superfields is motivated there as a first step towards embedding the theory into su-

pergravity. As we are not interested in supergravity in this paper, we will use a simpler

formalism where the Goldstino field remains as a non-linearly transforming field. We will

also use results from earlier work by Ivanov and Kapustnikov [28] that establishes the

correspondence between superfields and non-linear fields.1

2.1 Convention and superfields

We use the metric convention: ηab = diag.(+ −−−). The SUSY algebra is

{

Qα, Q̄β̇

}

= 2σa
αβ̇

Pa. (2.1)

Under a group element,

g = eicaPa+iηQ+iη̄Q̄, (2.2)

the superspace coordinate (xa, θα, θ̄α̇) transforms as [30]

xa → xa′ = xa + ca + ∆a(η, θ), θα → θ′α = θα + ηα, θ̄α̇ → θ̄′α̇ = θ̄α̇ + η̄α̇, (2.3)

where the ∆a factor is defined by

∆a(η, ξ) ≡ iησaξ̄ − iξσaη̄. (2.4)

A superfield Ψ
(

x, θ, θ̄
)

transforms as

gΨ
(

x, θ, θ̄
)

g−1 = r(g−1)Ψ
(

x, θ, θ̄
)

= Ψ
(

x′, θ′, θ̄′
)

(2.5)

under SUSY. The operation r
(

g−1
)

is a representation of g−1 on superfields defined by the

second equality.

2.2 Non-linear SUSY

The non-linear transformation under g in eq. (2.2) is defined by Volkov and Akulov in

ref. [31]. It is

x̃µ → x̃µ′ = x̃µ + cµ + ∆µ(η, λ(x̃)) , (2.6)

λα(x̃) → λ′
α(x̃′) = λα(x̃) + ηα, (2.7)

λ̄α̇(x̃) → λ̄′
α̇(x̃′) = λ̄α̇(x̃) + η̄α̇. (2.8)

The fields λ and λ̄ are the Goldstino fermion and its complex conjugate, respectively.2

The transformation above satisfies the algebra in eq. (2.1). Note that a global SUSY

transformation induces a general coordinate transformation in eq. (2.6) on the x̃ space.

1The generalization of this relationship to local supersymmetry can be found in ref. [29].
2Throughout this paper we will use the shorthand notation λ = λ(x̃) with mass dimension −1/2, unless

indicated otherwise.
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One can construct the Maurer-Cartan 1-forms [32]:

A a
µ = η a

µ − iλσa∂µλ̄ + i∂µλσaλ̄, (2.9)

∇aλ =
(

A−1
) µ

a
∂µλ, (2.10)

∇aλ̄ =
(

A−1
) µ

a
∂µλ̄. (2.11)

The matrix A transforms as the vielbein under g:

A a
µ (x̃) → A′ a

µ

(

x̃′
)

=
∂x̃ν

∂x̃′µ
A a

ν (x̃), (2.12)

whereas ∇aλ and ∇aλ̄ are invariant.

Matter fields φ(x̃) can be introduced on the x̃ space. The SUSY transformation on

operators is defined by [28]

gφ(x̃)g−1 = r̃
(

h−1(g, λ)
)

φ(x̃) = φ
(

x̃′
)

, (2.13)

where r̃(h−1) is the representation of the space-time translation acting on the x̃ space

defined in eq. (2.6).3 A supersymmetric action for φ(x̃) can be obtained simply by writing

an invariant action under the general coordinate transformation in eq. (2.6) by using the

vielbein in eq. (2.9).

Superfields and non-linear fields are living in different spaces x and x̃ which we cannot

identify as the same space at this stage since their SUSY transformations are different. In

order to write down an interaction term between φ(x̃) and superfields, we need a “converter”

which transforms a field in the x̃ space into a superfield in the superspace (x, θ, θ̄).

The discussion is completely parallel to the formalism of Callan-Coleman-Wess-Zumino

(CCWZ) for internal global symmetries [33]. (See also [25] for a review.) There a global

symmetry G is spontaneously broken down to a subgroup H. A Lagrangian which is

invariant under the global H transformation can be upgraded to a G invariant one by

making the Lagrangian invariant under a local H transformation where the Maurer-Cartan

1-form (projected onto the unbroken generators) can be used as the gauge connection.

In the CCWZ formalism, a linear representation of a group element ξ(x) ≡ eiπ(x) ∈ G

plays a role of the converter between the G and H indices by defining the transformation

of ξ to be ξ(x) → gξ(x)h−1(g, π). We can follow a similar prescription here by taking the

converter r(Ξ) with Ξ = eiQλ+iQ̄λ̄. For example, a superfield Φ(x, θ, θ̄) can be constructed

from a non-linear field φ(x̃) by

Φ
(

x, θ, θ̄
)

≡ r(Ξ)φ(x) = φ(x − ∆ (λ(x̃), θ)) . (2.14)

At this stage, Φ is not defined yet because the last expression still contains x̃. The appro-

priate identification is found to be

x̃µ = xµ − ∆µ(λ(x̃), θ), (2.15)

3In terms of the same notation in eqs. (2.7) and (2.8), the transformation of the classical field (or expec-

tation values of the field) is: φ(x̃) → φ′(x̃′) = φ(x̃). For a classical superfield, Ψ(x, θ, θ̄) → Ψ′(x′, θ′, θ̄′) =

Ψ(x, θ, θ̄). The transformation laws remain unchanged for fields with Lorentz indices.
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which consistently defines the superfield Φ [28]. (See also [17, 19, 34–37] for constructing

superfields out of non-linear fields). There is still a little bit of complication because the

above equation is non-linear in x̃. It is possible to iteratively solve x̃ in terms of x, λ(x)

and θ, but the solution involves many terms although the iterations will be terminated at

finite steps. Nonetheless, one can explicitly check that Φ(x, θ, θ̄) is a superfield, i.e.,

Φ
(

x′, θ′, θ̄′
)

= φ
(

x̃′
)

, (2.16)

because

x̃′µ = x′µ − ∆µ
(

λ′
(

x̃′
)

, θ′
)

. (2.17)

In general, any function of

φ(x̃), θ − λ(x̃), θ̄ − λ̄(x̃), (2.18)

with x̃ defined by eq. (2.15) is a superfield.

As an equivalent formulation, one can construct a supersymmetric action using the

supersymmetric invariant

1 =

∫

d4x̃det Xδ4 (xµ − x̃µ − ∆µ (λ(x̃), θ)) , (2.19)

in the superspace integral. The Jacobian matrix X is

X a
µ = η a

µ − iθσa∂µλ̄ + i∂µλσaθ̄, (2.20)

which transforms in the same way as A, and is equal to A at θ = λ(x̃), θ̄ = λ̄(x̃). With

the delta function, one can treat x, θ, θ̄, and x̃ as independent variables in constructing

the Lagrangian. The invariant action can be written down as

S =

∫

d4xd4θd4x̃det X δ4 (xµ − x̃µ − ∆µ (λ(x̃), θ))

×K
[

Ψ
(

x, θ, θ̄
)

, φ (x̃) , θ − λ, θ̄ − λ̄,∇aλ,∇aλ̄, A,X, . . .
]

, (2.21)

where Ψ and φ represents arbitrary superfields and non-linear fields, respectively. The

function K must be real and scalar under the general coordinate transformation about the

x̃ coordinate. As an example of the invariant action, we can take K = Ψ(x, θ, θ̄) which

gives the supersymmetric action,

S =

∫

d4xd4θΨ
(

x, θ, θ̄
)

. (2.22)

If we take K = δ4(θ − λ) ·
(

−f4/2
)

, we obtain the Volkov-Akulov action [31]

S = −f4

2

∫

d4x̃det A. (2.23)
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This contains the kinetic term for the Goldstino. The parameter f is the decay constant

which represents the size of the SUSY breaking. Note that naive dimensional analysis [38]

implies a cutoff Λ ∼
√

4πf .4

One may generalize the Volkov-Akulov action. From the invariance of ∇aλ,

S = −f4

2

∫

d4x̃det A F
(

∇aλ,∇bλ̄
)

(2.24)

is SUSY invariant for any F that forms a Lorentz invariant out of ∇aλ and/or ∇bλ̄ [32, 34].

Another possibility is to consider the “metric”

Gµν ≡ A a
µ A b

ν ηab (2.25)

which transforms as a covariant tensor and can be used to build invariant actions.

For instance,

∫

d4x̃detA R[G] (2.26)

is invariant under global SUSY transformations. The leading term begins at O(∂3) and

involves two Goldstinos. Terms involving four Goldstinos have O(∂4) and so on, with the

last term involving 8 Goldstinos and 6 derivatives.

Lagrangian densities with a single space-time coordinate x or x̃ are obtained by per-

forming one of the space-time integrals, i.e., of the form:

S =

∫

d4xL(x) +

∫

d4x̃L̃(x̃) . (2.27)

This action is of course identical to

S =

∫

d4x
(

L(x) + L̃(x)
)

. (2.28)

We now have a Lagrangian in a single space-time.

Superpotential-like terms can also be constructed as

S =

∫

d4yd2θd4x̃detY δ4
(

yµ − x̃µ − iλσµλ̄ + 2iθσµλ̄
)

×W
[

Ψ(y, θ), φ (x̃) , θ − λ,∇aλ,∇aλ̄, A, . . .
]

+ h.c., (2.29)

with

yµ = xµ − iθσµθ̄, (2.30)

4Although the Volkov-Akulov action involves many terms with different numbers of derivatives, the

momentum expansion still makes sense once we fix the number of external lines in each amplitude. For

example, the lowest order (tree) amplitudes with d external Goldstinos is O(pd) and n-loop corrections

to that are O(pd+4n). When comparing with other terms in the action, we should count the number of

derivatives with a fixed number of the Goldstino fields. We can easily see that terms in eq. (2.24) and (2.26)

contain more derivatives than the Volkov-Akulov action.
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and

Y a
µ = η a

µ + i∂µλσaλ̄ + iλσa∂µλ̄ − 2iθσa∂µλ̄. (2.31)

There is an intuitive picture for this construction. We can imagine a set-up where a

3-brane is embedded into a superspace. The Goldstino field λ(x̃) defines the map from a

point on the brane to a point in the superspace. One can write down a usual superspace

Lagrangian as well as a brane localized action. The brane action should be invariant

under the general coordinate transformation because SUSY, which is a translation in the

superspace, induces a coordinate transformation (which depends on λ(x̃)) on the brane.

The interaction terms between superfields (bulk fields) and brane fields can be written

down by using a delta function.

2.3 Gauge invariance

It is now possible to write down an interaction term between a chiral superfield O(y, θ)

and a non-linear field φ(x̃):

S =

∫

d4x̃d2θ detA O
(

x̃µ + iλσµλ̄ − 2iθσµλ̄, θ
)

φ (x̃) + h.c., (2.32)

from

W = O(y, θ)φ(x̃). (2.33)

By taking O as a bilinear of the quarks/leptons superfields and φ as the Higgs boson, this

gives a supersymmetric Yukawa interaction term.

However, if O and φ are charged under some gauge symmetry (as it is true in the

Standard Model), we need to modify the interaction term since it is not gauge invariant.

The gauge transformation is defined by

O → eiΛa(y,θ)T̃ aO(y, θ), (2.34)

and

φ → eiαa(x̃)T a

φ(x̃), (2.35)

where (T̃ a)ij = −(T a)ji. Under this transformation, the action is clearly not invariant.

In order to maintain gauge invariance, we write the action as

S =

∫

d4xd4θd4x̃ det X δ4(x − x̃ − ∆(λ, θ)) δ4(θ − λ)

(

1

2
e2gV D2e−2gV O

)

φ(x̃)

=

∫

d4x̃det A

(

1

2
e2gV D2e−2gV O

)
∣

∣

∣

∣

x=x̃,θ=λ,θ̄=λ̄

φ(x̃), (2.36)

where V = V aT̃ a. The gauge transformation of the vector superfield is

e−2gV → eiΛ†

e−2gV e−iΛ. (2.37)

– 8 –



J
H
E
P
1
0
(
2
0
0
9
)
0
7
7

The derivative operators are defined by

Dα =
∂

∂θα
− i

(

σaθ̄
)

α

∂

∂xa
, D̄α̇ = − ∂

∂θ̄α̇
+ i(θσa)α̇

∂

∂xa
. (2.38)

By defining the gauge transformation of φ(x̃) with

αa(x̃) = Λa(y, λ) = Λa
(

x̃, λ, λ̄
)

, (2.39)

the interaction term in eq. (2.36) is gauge invariant. Note, however, that the function α(x̃)

defined above can be complex valued unlike the usual gauge transformation (it is real in

Wess-Zumino gauge).

It is possible to define a covariant derivative to write down a kinetic term for φ(x̃). We

define gauge superfields [39]

gAa

(

x, θ, θ̄
)

≡ 1

4
D̄e2gV σ̄aDe−2gV , (2.40)

and

gAα

(

x, θ, θ̄
)

≡ e2gV Dαe−2gV . (2.41)

The gauge transformations of these superfields are

Aa → eiΛAae
−iΛ +

i

g
eiΛ ∂

∂xa
e−iΛ , (2.42)

Aα → eiΛAαe−iΛ +
1

g
eiΛDαe−iΛ. (2.43)

We defined V = V aT a and Λ = ΛaT a this time. By using these superfields, the “covariant”

derivative is constructed as

Da ≡ ∇a − igAa + g(∇aλ
α)Aα. (2.44)

This derivative operator is not covariant under the gauge transformation at this stage.

However, under the δ-functions, δ4(x − x̃ − ∆) and δ4(θ − λ), one can confirm that it

behaves as a covariant derivative: Daφ(x̃) → eiαDaφ(x̃).

Then the kinetic term can be written as

Kkin. = δ4(θ − λ)
[

(Daφ(x̃))†e−2gV Daφ(x̃)
]

. (2.45)

The potential terms are

Kpot. = δ4(θ − λ)

[

−m2φ†(x̃)e−2gV φ(x̃) − k

4

(

φ†(x̃)e−2gV φ(x̃)
)2

]

. (2.46)

Both are gauge invariant under the delta functions with complex-valued α satisfying

eq. (2.39). The quartic coupling k is unrelated to the gauge coupling constant in con-

trast to the prediction of the MSSM.
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3 Higgsinoless SUSY

We are now ready to construct a Lagrangian. For quarks/leptons and gauge superfields,

one can simply write down the MSSM Lagrangian in the superspace. Soft SUSY breaking

terms can be written down by using delta functions δ2(θ − λ) and δ4(θ − λ):

Ksoft = −δ4(θ − λ) · m2
ΨΨ†Ψ

⇒ S ∋ −
∫

d4x̃detA m2
ΨΨ†Ψ

(

x̃, λ, λ̄
)

, (3.1)

and

Wsoft = −δ2(θ − λ) ·
m1/2

2
W αWα

⇒ S ∋ −
∫

d4x̃ detA
m1/2

2
W αWα

(

x̃, λ, λ̄
)

+ h.c. (3.2)

These are the same as the spurion method for the soft SUSY breaking terms. The appear-

ance of the Goldstino interactions makes these terms manifestly supersymmetric. One can

also add hard breaking terms by using covariant derivatives. We assume that such soft

and hard breaking terms are somewhat suppressed because the quarks/leptons and gauge

fields are not participating the SUSY breaking dynamics.

We introduce the Higgs field as a non-linear field on the x̃ space, h(x̃), motivated by

an assumption that the SUSY breaking dynamics at the cut-off scale Λ has something to

do with the origin of electroweak symmetry breaking. The way to construct interaction

terms has been discussed already in the previous subsection. The Yukawa interactions for

up-type quarks are

Kup = δ4(θ − λ)

[

yij
u h(x̃) ·

(

1

2
D2

(cov)U
c
j Qi

)]

. (3.3)

For down-type quarks and leptons,

Kdown = δ4(θ − λ)

×
[

yij
d h(x̃)†e−2gV

(

1

2
D2

(cov)D
c
jQi

)

+ yij
e h(x̃)†e−2gV

(

1

2
D2

(cov)E
c
jLi

)]

. (3.4)

Here we have used the covariant derivative:

D2
(cov) ≡ e2gV D2e−2gV . (3.5)

It is not necessary to introduce two kinds of Higgs fields for the Yukawa interactions. The

A-terms can also be written down by taking

WA = δ2(θ − λ)
[

Aij
u h(x̃) · (U c

j Qi)
]

, (3.6)

and

KA = δ4(θ − λ)
[

Aij
d h(x̃)†e−2gV

(

Dc
jQi

)

+ Aij
e h(x̃)†e−2gV

(

Ec
jLi

)

]

. (3.7)
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Since the quartic coupling of the Higgs boson in eq. (2.46) is a free parameter, the

Higgs boson mass is not related to the Z-boson mass. It is not a very obvious result that

we could write down a Lagrangian with a single Higgs boson with the enlarged gauge

invariance. For example, in ref. [35] it has been necessary to introduce an extra Higgs

boson, and that is claimed to be a general requirement for constructing a realistic model

with non-linear SUSY.

4 Hidden gravity

A SUSY transformation in the x̃ space is realized as a local coordinate transformation in

eq. (2.6). This local translation allows us to introduce a metric in the x̃ space having a local

transformation law under the global SUSY. This provides a description of a composite spin-

two field5 in the SUSY breaking dynamics analogous to the ρ meson in QCD. We further

elaborate on this comparison towards the end of this section.

Specifically, we introduce a second “metric” whose transformation under g is

gµν(x̃) → g′µν

(

x̃′
)

=
∂x̃ρ

∂x̃′µ

∂x̃σ

∂x̃′ν
gρσ(x̃), (4.1)

where x̃′ is given in eq. (2.6).6 Note that this is a global SUSY transformation, and one

should not be confused with the actual general coordinate transformation on the x-space.

The space-time is always flat. The deviation of gµν from the Minkowski metric describes

the spin-two field.

The invariant action having the Fierz-Pauli form [44] is

S =

∫

d4x̃

[

−f4

2
det A − m2

P

2

√
gR(g) − m2

Pm2

8

√
ggµνgαβ (HµαHνβ − HµνHαβ)

]

(4.2)

where

Hµν = gµν − Gµν (4.3)

and

Gµν = A a
µ A b

ν ηab. (4.4)

is a covariant tensor, defined previously. The Hµν field is therefore a SUSY covariant

tensor. The scale mP is a mass parameter of O(TeV), unrelated to the four-dimensional

Planck mass G
−1/2
N of Einstein gravity. With

gµν = ηµν +
2

mP
hµν , (4.5)

5An attempt to describe a spin-two resonance in QCD as a massive graviton can be found in ref. [40],

whose supergravity extension is discussed in ref. [41]. A more ambitious attempt to formulate Einstein

gravity as a composite of the Goldstino fermions can be found in ref. [42]. The appearance of a massive

bound-state graviton in open string field theory can be found in ref. [43].
6We could have instead defined the spin-two field to transform as a scalar under g: gab(x̃) → g′

ab(x̃
′) =

gab(x̃). This is an equivalent formulation, since the two definitions are related by multiplying by the vielbein,

gab(x̃) ≡ Aµ
aAν

b gµν(x̃). We will not pursue this formulation any further.
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one has

Hµν =
2

mP
hµν +

(

iλσµ∂ν λ̄ − i∂νλσµλ̄ + (µ ↔ ν)
)

+ (four-fermion terms) (4.6)

Note the relative coefficient (of −1) between the two terms appearing in the definition of

Hµν is fixed by requiring that the Fierz-Pauli mass term not introduce a tadpole for the

graviton. The last term in the action gives a mass m to the spin-two field in a global SUSY

invariant way.

There are other invariant terms involving hµν and up to two derivatives, such as

√
g, detA · R(g), etc. (4.7)

but these are forbidden by the Lorentz invariance of the vacuum and the absence of ghosts

and tachyons. That is, the Einstein action with Fierz-Pauli mass term is the unique

tachyon and ghost-free action for a spin-two field [45, 46]. Although loop corrections will

not preserve this form, the ghost pole is harmless since its effect is pushed to the cutoff [56].

Other interactions, such as

√
g · R(H), det A · R(H) (4.8)

begin at higher than quadratic order in hµν .

In the chiral Lagrangian of QCD one can construct SU(2) vector- and axial-type 1-

forms jV,A out of the pion fields. A chirally invariant Lagrangian can be constructed only

out of jA, since jV transforms inhomogeneously under the chiral SU(2). By introducing an

SU(2)V vector boson Vµ, the term Trj̃V j̃V , with j̃V = jV − V , is made chirally invariant

and can be added to the action. This gives a mass to the vector boson, but no kinetic

term; it can be trivially integrated out. The key assumption of [22–26] is that this vector

boson is dynamical (and describes the ρ vector meson). The action obtained in this way

coincides with the spontaneously broken SU(2)V gauge theory in the unitary gauge, which

obviously can have a sensible description up to some high energy scale.

The analogy of the massive spin-two field as formulated here to the Hidden Local

Symmetry (HLS) of QCD can now be drawn more closely, though imprecisely. Here the

Maurer-Cartan 1-forms A a
µ are analogous to the jV in QCD. By introducing a spin-two

field having a local and inhomogeneous transformation under the global symmetry, it is

then possible to introduce the 1-forms into the action, in the form of the Fierz-Pauli mass

term.7 Further assuming a Ricci scalar term in the action for the spin-two field is equivalent

to the physical assumption in HLS that the gauge boson is dynamical.

4.1 Perturbative unitarity

A question to be addressed here is whether this new spin-two resonance can be consistently

introduced in a weakly coupled regime, in which perturbative calculations make sense at

energies of O(m). We first check this by looking at the elastic scattering of two Goldstinos

with the same helicity. Then we require that the spin-two field is not strongly coupled

at threshold.

7The other invariant is detA, since the coordinates also transform.
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In supergravity, the amplitudes of the elastic scattering of two gravitinos have been

calculated in ref. [47] and it has been shown that the scalar partners of the Goldsino fermion

unitarize the amplitudes if they are light enough. We show in this subsection that a spin-

two field, instead of the scalar fields, can also partially cancel the growth of the scattering

amplitudes. This is analogous to the discussion of the WW scattering in the Standard

Model. The SU(2)L partner of the Goldstone boson, the Higgs boson, can unitarize the

WW scattering amplitude if it is light enough. But alternatively, it has been known from

the analysis of the Higgsless model [48, 49] that a massive vector boson can also partially

cancel the amplitude, and the theory can remain perturbative up to some high energy scale

above the Kaluza-Klein scale [48, 50]. The massive vector boson is indeed identified with

the one in HLS once the Higgsless model is formulated as a four-dimensional theory [51–54]

by using the technique of deconstruction [55].

The amplitude Mλλ for λλ → λλ receives contributions from both the Volkov-Akulov

action and the action for the spin-two field. Specifically, one obtains

Mλλ = M(det A)
λλ + M(HH)

λλ , (4.9)

M(det A)
λλ =

2s2

f4
, (4.10)

M(HH)
λλ = −5m2

Pm2s2

f8

−m2
Pm2s2

f8

[

m2

t − m2

(

5

2
+

3

2
cos θ

)

+
m2

u − m2

(

5

2
− 3

2
cos θ

)]

. (4.11)

The contribution from the Volkov-Akulov action is given in eq. (4.10), and those from the

spin-two action in eq. (4.11). The production angle θ is defined in the center-of-mass frame.

The contributions from the spin-two action deserve further comment. The second

term in the r.h.s. of eq. (4.11) is the contribution from t and u channel exchange of the

massive graviton, arising from the Goldstino-Goldstino-graviton coupling in the Fierz-Pauli

mass term. The Fierz-Pauli mass term however also has a contact four-point interaction

involving the Goldstinos, giving the first term in the r.h.s. of eq. (4.11). By inspection,

in the low-energy limit these two contributions to M(HH)
λλ exactly cancel. That is, at low

energies one obtains the same λλ scattering amplitude as in the theory without a massive

graviton. Therefore, the decay constant f appearing in the action in eq. (4.2) is the same

as the one in the original Volkov-Akulov action.

The partial wave amplitudes are defined by

Mℓ
λλ =

1

64π

∫ 1

−1
d(cos θ)Pℓ(cos θ)Mλλ, (4.12)

where Pℓ denotes the Legendre Polynomials: P0(z) = 1, P1(z) = z, P2(z) = 1
2(3z2−1), etc.

Since the particles in the final state are identical, we compensate the integral over all of

phase space by multiplying by a factor of 1/2. Substituting the expressions in eqs. (4.9)–
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Figure 1. The magnitude of the s-wave amplitude as a function of
√

s/f . Upper and lower curves

represent contributions from (−f4/2) detA and (HµνHµν − Hµ
µHν

ν ) terms, and the middle curve

represents the total amplitude. Here, mP = 0.7f and m = 1.2f are used as an example.

(4.11), we obtain the following s-wave amplitude for the λλ scattering.

Mℓ=0
λλ =

1

16π

s2

f4

− 5

32π

m2
Pm2s2

f8
− 1

16π

m2
Pm4s

f8

[

3 −
(

4 +
3m2

s

)

ln
(

1 +
s

m2

)

]

. (4.13)

The first term in the r.h.s. comes from M(det A)
λλ , while the remaining terms come from

M(HH)
λλ . There is no parameter to control the relative sign of the two contributions. One

can see that two O(s2) terms in eq. (4.13) always have an opposite sign, and thus the

graviton contribution partially cancels the growth of the amplitude. The magnitude of the

s-wave amplitude is plotted in figure 1 as a function of
√

s/f . The upper and lower curves

represent contributions from (−f4/2) det A and (HµνHµν − Hµ
µHν

ν ) interactions (i.e., the

first and second row of the r.h.s. of eq. (4.13), respectively). The the middle curve represents

the total amplitude. The parameters mP = 0.7f and m = 1.2f are chosen for illustration.

We define the perturbative-unitarity-violation scale E∗, by the energy where the tree

level s-wave amplitude of λλ scattering reaches the value 0.5. In the case of the example de-

picted in figure 1, the pure Goldstino amplitude (i.e., the upper curve) gives E∗ ∼ 2.2f . The

contribution of the spin-two particle to this amplitude has the opposite sign (lower curve).

This contribution partially cancels the pure Goldstino amplitude, delaying the onset of the

strong coupling regime. For the parameter values used in figure 1, one finds E∗ ∼ 3.4f .

Perturbativity imposes additional constraints, since at high energies both the Goldstino

and the graviton become strongly coupled. These are of three kinds. First, the interactions

in the Volkov-Akulov action modify λλ → λλ scattering at one-loop. Compared to the

tree-level amplitude, the one-loop amplitude gives a relative correction of O(s2/((4π)2f4)),

which suggests that the natural cut-off scale is O(
√

4πf). At
√

s ∼ m ∼ f these corrections

are O(1/(4π)2) and the expansion parameter is small.
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Figure 2. The contour of E∗ = m and Λ
(5)
∗ =

√
2m in the parameter space of m/f and mP/f . In

the region to the left of the thick lines, both E∗ > m and Λ
(5)
∗ >

√
2m are satisfied.

Next, the interactions of the massive graviton provide additional and stronger con-

straints. The “Einstein gravity” interactions grow with energy and become strong at ener-

gies of order E ∼ 4πmP. With mP & f/
√

4π this is of order Λ or larger. There is however

a stronger constraint, since the spin-two field is massive. The coupling of the longitudinal

component becomes strong at a lower scale, proportional to (mPm4)1/5 [56]. This estimate

is obtained from using the equivalence theorem in the limit E ≫ m. Factors of 4π can be

estimated using naive dimensional analysis [38]. For example, the one-loop contribution of

the Goldstino to the vacuum polarization of the spin-two state becomes comparable to the

tree-level propagator at roughly an energy scale

Λ
(5)
∗ =

(

4πmPm4
)1/5

. (4.14)

One then expects higher dimension operators involving the spin-two field to be suppressed

by this scale. We will use this scale as a crude estimate of the energy at which the low-

energy effective theory is no longer calculable. Note that for m = mP the theory becomes

strongly coupled at E ∼ 1.7m, not far above threshold.

The parameter region in which the spin-two resonance can be consistently incorporated

in the effective theory is then approximately bounded by these considerations. For illus-

tration, in figure 2 we plot the contour of E∗ = m and Λ
(5)
∗ =

√
2m in the parameter space

of m and mP. In the region to the left of the thick lines, both E∗ > m and Λ
(5)
∗ >

√
2m are

satisfied, and we expect that the production of the spin-two resonance in the single-graviton

channel can be treated in perturbation theory, that is, for E ∼ m < min
[

E∗,Λ
(5)
∗

]

.

At higher energies though, the theory becomes strongly coupled. As we have seen,

for generic values of the parameters the scale of strong coupling is not far above the mass
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of the spin-two particle. Since pair production of the spin-two resonances or scattering of

spin-two resonances requires E & 2m, these processes are generically not calculable. Thus

we have a situation where processes describing the production and decay of a single on-shell

spin-two resonance are plausibly perturbative, but soon becomes strongly coupled above

the single-particle threshold.

4.2 Phenomenological signatures

In the effective theory the leading order interactions between the spin-two and Higgs boson

are given by

Kkin. = δHδ4(θ − λ)Hµν
[

A a
µ A b

ν (Daφ)†e−2gV Dbφ
]

+δ′Hδ4(θ − λ)TrH
[

ηab(Daφ)†e−2gV Dbφ
]

(4.15)

and

Kpot. = δ′′Hδ4(θ − λ)TrH

[

−δm2φ†e−2gV φ − δk

4

(

φ†e−2gV φ
)2

]

. (4.16)

where δH , δ′H and δ′′H are parameters assumed to be of O(1). These interactions begin at

O(hµνhh) or O(hµνV V ) (V = W,Z). Other interactions are possible, such as replacing

Hµν with gµν . Such interactions are equivalent to those above, since the difference can be

adsorbed in the normalization of the kinetic and potential terms for the Higgs. One may

also consider the above interactions multiplied by det A−1√−g; to zeroth order in λ∂λ

these are the same. The interaction terms proportional to TrH do not contribute to any

tree amplitude when the spin-two field is on-shell.

A general feature of the spin-two field that distinguishes it from massive gravitons

from extra dimensions (i.e., from a metric), is that it does not have a minimal coupling.

That is, it does not couple universally to the total stress-energy tensor of matter, or even

non-universally to the stress-energy tensor of each particle. This is explicitly evident in its

couplings to the Higgs boson, eqs. (4.15) and (4.16), since the parameters δH , δ′H and δ′′H
are unrelated. Only for a specific ratio of these parameters does the spin-two field couple

to the stress-energy tensor of the Higgs boson. However in the effective theory there is no

symmetry principle which would enforce such a condition.

At one-loop these interactions will generically modify the Fierz-Pauli form of the gravi-

ton mass term. This introduces a ghost at high energy. For δH ∼ δ′H ∼ O(1), the ghost

pole is above the cut-off scale provided

Λ .
(

4πm2mP

)1/3
. (4.17)

For m . 4πmP the r.h.s. is always larger than the cutoff Λ
(5)
∗ above which the graviton is

strongly coupled. The spin-two interactions with the Higgs boson therefore do not intro-

duce a ghost below Λ
(5)
∗ provided this condition is satisfied and the couplings in eqs. (4.15)

and (4.16) are no larger than O(1). It is therefore not surprising that (4.17) is also para-

metrically the same as the largest possible cutoff of an interacting massive graviton [56]
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(i.e., the scale Λ(3) in the notation of that reference). It is perhaps more of a coincidence

that (4.17) is also the maximum cutoff of an electromagnetically coupled spin-two particle

of charge e [57] with the correspondence e → δHm/mP.

With the assumption that of the Standard Model particle content only the Higgs boson

couples directly to the strong dynamics breaking SUSY, the dominant decay modes of the

spin-two particle are then

hµν → λλ̄, hh, WW, ZZ. (4.18)

One obtains

Γ(hµν → λλ̄) =
1

16π

1

5

m2
Pm7

f8
(4.19)

for the (invisible) Goldstino final state, and

Γ(hµν → hh) =
1

16π

1

5

δ2
H

4

m3

3m2
P

(

1 − 4m2
h

m2

)5/2

(4.20)

for the Higgs boson final state. The powers of velocity appearing here may be understood by

noting that its rest frame, the spin-two particle couples to the velocity of the Higgs boson,

leading to two powers in the amplitude, or five in the rate. In the limit m ≫ mW ,mh the

Equivalence Theorem applies, giving Γ(hµν → hh) = Γ(hµν → ZZ) = Γ(hµν → WW )/2.

Note the spin-two resonance is narrow provided the three mass scales m, f,mP are all

comparable and δ2
H is O(1).

We next define a field strength

Fµν ≡ i

g
[A a

µ Da, A
b

ν Db], (4.21)

by using the “covariant” derivative in eq. (2.44). A graviton-gluon interaction term can

then be written as

Kglue = − δg

4kg
δ4(θ − λ)HµρGνσTr (FµνFρσ) . (4.22)

The normalization factor kg is defined by Tr(T iT j) = kgδ
ij . These interactions give

hµν → gg. (4.23)

By assumption the interaction term is small — δg ≪ 1 — and therefore this decay is

suppressed compared to other channels.

This interaction however leads to the production of spin-two particles through the

collisions of gluons. In the narrow-width approximation the leading-order differential pro-

duction cross-section to hh at the parton level is

dσ̂

d cos θ
(gg → hµν → hh) =

1

16πŝ

δ2
gδ

2
H

2048

m8

m4
P

(

1 − 4m2
h

m2

)5/2
π

mΓtot
δ(ŝ − m2) sin4 θ. (4.24)
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Figure 3. The cross section (4.27) (hh mode) as functions of the graviton mass for 1.96, 10 and

14TeV center-of-mass energies. Using CTEQ6M parton distribution functions [58] and setting

mh = 114GeV. The relation f = mP = m is kept fixed as m is varied.

The phase space is 0 ≤ θ ≤ π/2 because of the identical particles in the final state. For

m ≫ mh the two Higgs bosons are highly boosted. The observation of the sin4 θ dependence

of the cross section will be an interesting confirmation of the spin-two resonance.

The total cross section at the LHC is then given by

σ =

∫ 1

0
dx1

∫ 1

0
dx2

∫

dŝ δ (ŝ − x1x2s) fg

(

x1,m
2
)

fg

(

x2,m
2
)

σ̃ (ŝ) sδ
(

ŝ − m2
)

, (4.25)

where

dσ̂ = dσ̃ · sδ
(

ŝ − m2
)

(4.26)

and s is the proton-proton center-of-mass energy. The expression for the cross-section

reduces to

σ =
dL(τ)

dτ
σ̃(m2) , (4.27)

where the luminosity function dL(τ)/dτ is defined by

dL(τ)

dτ
≡

∫ 1

τ
dx

1

x
fg(x, τs)fg(τ/x, τs),

(

τ ≡ m2

s

)

, (4.28)

and the σ̃ factor is

σ̃
(

m2
)

=
π

64s

m2

m2
P

· δ2
g · B (hµν → hh) . (4.29)

The cross section (4.27) for pp → hµν → hh are shown in figure 3 for a choice of parameters,

using the CTEQ6M parton distribution functions [58]. The spin-two couplings to the Higgs
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boson and the gluon are chosen to be δH = 1 and δg = 0.1. The production rate depends

on the Higgs boson mass only through phase space, and is therefore significant only for

2mh comparable to m; in figure 3 we have set mh = 114 GeV. We have varied m while

holding the relations f = m = mP fixed. The reason for this is to satisfy the requirements

of weak coupling, as discussed previously. For this choice of parameters, the cross-section

is larger than 1 fb at 14 TeV (10 TeV) for spin-two masses m . 1.75 (1.5) TeV. We note

that the production cross-section is sensitive to the spin-two coupling δg to gluons, so that

larger rates are possible.

We conclude this section with comments on other phenomenological signatures of the

spin-two field.

When all the mass scales are comparable and δH = O(1) no one decay mode dominates

over any other. For example, with δH = 1 and f = m = mP ≫ mh one has

Γ(hµν → λλ̄)

Γ(hµν → hh) + Γ(hµν → ZZ) + Γ(hµν → WW )
= 3. (4.30)

Since producing the graviton in association with a gluon jet is also proportional to δ2
g ,

searching for the invisible decay in this channel may be promising and important to validate

this scenario. Note monojets are also a generic signature of large extra dimensions [59].

Couplings of the spin-two field to electroweak and hypercharge field strengths may also

occur. These operators are analogous to its interactions with gluons (4.22). Although by

assumption they too are suppressed, the rare decay

hµν → γγ (4.31)

is of obvious experimental interest. The rapidity distribution of the photons depends on

the spin of the resonance, which in principle may be used to distinguish the graviton from

a scalar.

Finally, spin-two particles can also be produced through vector boson fusion qq′ →
qq′hµν , which has been recently studied in [60]. In our model the production rate is pro-

portional to δ2
H and therefore under our assumptions cannot be made arbitrarily small,

unlike the production through gluon-gluon fusion which is suppressed by the small param-

eter (δg). Compared to Higgs production from vector boson fusion, the production rate of

the spin-two particle is suppressed by a factor of v2/m2
P . This is simply because in uni-

tary gauge the amplitude for producing the spin-two field involves two Higgs vev insertions,

whereas the same amplitude for producing the Higgs boson has only a single insertion. The

Higgs and graviton production cross-sections through vector boson fusion are not trivially

related however, since they scale differently with mass due to the dependence on spin. The

rate in this channel could be of experimental interest if the spin-two mass is low and the

scale mP not too large.

Experimentally discovering the spin-two field in different production channels and mea-

suring the branching ratios to the invisible and all visible decay channels will obviously

help discriminate between different models of composite or Kaluza-Klein spin-two fields.
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5 Summary

If SUSY is broken near the TeV scale by strong dynamics then there may be composites

that can be accessed at the LHC. It is desirable to have a formalism for writing the effective

theory describing the interactions between the matter or gauge fields and the composites,

especially in the situation where the matter and gauge fields are not participants of these

dynamics. The challenge then in this case is that the matter and gauge fields appear in lin-

early realized multiplets, whereas the composites do not. We have presented a formulation

of non-linearly realized global SUSY in which this can be done.

As an application, we consider two scenarios. In both, the Higgs boson is such a

composite. No Higgsinos are present in the low-energy theory. We show that it is possible

to write down SUSY invariant Yukawa couplings and A terms, despite the presence of only

one Higgs boson.

Next, we further suppose that the composites include a light spin-two field in addition

to the Higgs boson. The construction of the SUSY invariant action is in analogy to the

Hidden Local Symmetry of chiral dynamics, where the ρ meson is a massive vector boson

of a hidden local SU(2)V symmetry. Here though the hidden symmetry is local Poincaré.

Thus we find that a massive graviton can naturally be incorporated in a theory with an

enlarged spacetime symmetry, which in this case is global SUSY.

Some phenomenological signatures are discussed. Unlike a generic Kaluza-Klein gravi-

ton, the spin-two particle does not couple to the stress-energy tensor. Instead its interac-

tions with matter and gauge fields are constrained only by gauge, Lorentz and non-linear

SUSY invariance. Its dominant decay mode is to Goldstinos (invisible), electroweak gauge

bosons and the Higgs boson. Search strategies to find boosted Higgs bosons are particularly

interesting for this scenario. Vector boson fusion producing the spin-two particle occurs

and may be of experimental interest. Rare decays to di-photons also occur but the rate

is more model-dependent. Search strategies to find the Standard Model Higgs boson are

therefore simultaneously sensitive to finding the spin-two particle.

This scenario has the usual low-energy SUSY experimental signatures (without Hig-

gsinos), while in addition possessing signatures of both large [59] and warped extra dimen-

sions [61] — monojets (ADD) and a spin-two resonance (RS) — even though there is no

extra dimension. The discovery of SUSY particles and a single spin-two resonance is not

sufficient to claim discovery of an extra (supersymmetric) dimension. It may just be due

to four-dimensional strong SUSY breaking dynamics.
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